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New relations are established between the spectrum of a linear system and the indices of inertia of its quadratic integral. A detailed 
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1. L I N E A R  S Y S T E M S  W I T H  A Q U A D R A T I C  I N T E G R A L  
A N D  A R T I N  S P A C E S  

Consider the linear system of differential equations 

.f = A x ,  x e Nn (1.1) 
with a non-degenerate opera torA( lAI  * 0); the system is assumed to have a first integral which is a 
non-degenerate quadratic form 

f = (Bx,  x ) /2 ,  IBI ~ 0 (1.2) 

It has been shown [1] that Eqs (1.1) are Hamiltonian. A symplectic structure m is defined by the skew- 
symmetric matrix 

= BA- l (co(x  ', x") = (~2x', x")) 

and the Hamiltonian is identical with the quadratic form f: 

io03 = o3(l),dx) : d f ,  19 = A x  

In particular, n is even (n = 2k) and, as pointed out in [2], the spectrum of the operation A is 
symmetrical about the real and imaginary axes. 

The case when the inertia index of the quadratic form (1.2) equals n/2 = k is of particular interest. 
If the form (1.2) is taken as a pseudo-Euclidean metric in (Nn, then (Nn, f )  will be anArt in  space [3]. 
On the other hand, Nn has a natural symplectic structure m. This enables us to generate the symplectic 
geometry of the Artin space. The first steps were carried out in [1], where, for n = 4, the question of 
the position of the completely singular planes relative to the three-dimensional family of Lagrangian 
planes was linked with the construction of the spectrum and eigenvectors of the operatorA. Some results 
of [1] will be extended below to the case of arbitrary n. 

plane A (.containing the point x = 0) is said to be Lagrangian if We ,recall a k-dimensional k 
e0(x', x') = 0 for all x', x" ~ A. A plane A ~ is said to be singular if it lies entirely in the isotropic cone 
{f(x) = 0}. Finally, a plane A is said to be invariant if the trajectory of system (1.1) through each point 
of A lies entirely in A. 
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Proposition 1. Singular Lagrangian planes are invariant. 

Proof. We must prove that ifx ~ A, then2 = Ax ~ A. This means that o~(Ax, z) = 0 for all vectors z e A. But 

O~(Ax, z) = (BA-I(Ax), z) = (Bx, z) 

On the other hand 

2(Bx, z) = (B(x+z) ,  x + z ) - ( B x ,  x ) -  (Bz, z) = 0 

by virtue of the singularity assumption, which it was required to prove. 

One can prove in a similar fashion that invariant Lagrangian planes are singular. 

Example. The linearized equations of motion of a mechanical system with k degrees of freedom to 
which potential and gyroscopic forces are applied are 

t ' + F £ + P z  = 0, z~  N k (1.3) 

where F r = - F  is the matrix of gyroscopic forces and V = (Pz, z)/2 is the potential energy. Equations 
(1.3) may be written as Lagrange equations with Lagrangian 

1 1 . 1 
L = ~(~, ~) + ~(z, r z )  - ~(Pz, z) 

Applying a Legendre transformation, one can change to Hamiltonian equations with a quadratic 
Hamiltonian 

1 1 1 1 1 2 
H = ~(~, £) + V = ~(y, y) - ~(y, Fz) + ~(Pz, z) - -~(z, I" z) 

where y = ~ + Fz/2. Clearly, the inertial index of the integral H equals k = n/2 if the potential energy 
V has a strict maximum at the equilibrium position z = 0 (the matrix P is negative definite). 

2k Let  A = {y = Dz} be a k-dimensional plane in ~ containing the equilibrium state z = y = 0. This 
plane will be singular if 

(Dz, Dz)  - (Dz,  Fz) + (Pz, z) - (z, F2z)/4 = 0 

In other words, 

F 2 D r D + D D  r D r F - F D + p _ _ _  = 0 (1.4) 
2 2 4 

The plane A is Lagrangian (relative to the standard symplectic structure in R2k) if the matrix D is 
symmetric. In the case Eq. (1.4) is slightly simplified: 

D 2 D F - F D  F 2 
- 2 + P - "4" = 0 ( 1 . 5 )  

As is well-known (see [4]) this is the criterion for the plane A tO be invariant. In particular, a Lagrangian 
singular plane will be invariant (as stated in Proposition 1). 

2. D E G R E E S  OF S T A B I L I T Y  AND I N D I C E S  OF I N E R T I A  

The degree o f  stability s of system (1.1) is the number of pairs of pure imaginary roots of the characteristic 
equation of the operator A (counting their multiplicities). The degree o f  instability u is the number of 
roots (with their multiplicities) of the characteristic equation of A that lie in the right complex half- 
plane. One can also define the real degree o f  instability r as the number of positive real roots of the 
characteristic equation. Since the spectrum of the other respect to reflection in the real axis, it follows 
that 

u -- r mod2 (2.1) 
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Let i+(i -) be the positive (negative) index of inertia of the quadratic form (1.2). Since the form is 
non-degenerate, i + + t- = n. Obviously, i + - t- is always even. It has been shown [1] that 

u = i- mod2 (2.2) 

By (2.1), this congruence is equivalent to r - i- (mod 2). In particular, if i- is odd, the equilibrium 
x = 0 of system (1.1) is unstable. This statement generalizes a classical theorem of Thomson, which 
states that an equilibrium of system (1.3) with odd Poincar6 degree of instability cannot be gyroscopically 
stabilized. 

Example. Let system (1.1) and integral (1.2) depend on a parameter e, and suppose that for small 
< 0 the form (1.2) is positive definite (i- = 0); when e = 0 it becomes degenerate, and for small 
> 0 its index of inertia i- equals 1. Then system (1.1) becomes unstable as e passes through the value 

zero. Note that this stability exchange principle is independent of the dimensionality of the phase space, 
and therefore (under suitable natural conditions) it also holds in the infinite-dimensional case. 

We now add to the congruence (2.2) a simpler proposition regarding the degree of stability. 

Theorem 1. The degree of stability is even if and only if i + - i- (mod 4). 

Corollary. If the difference between the indices of inertia i + - i- is not divisible by 4, there is at least 
one pair of pure imaginary roots. 

The proof of Theorem 1 uses the fact that [A lIB I > 0. Indeed, the matrix f~ = BA -1 is non-singular 
and skew-symmetric. Consequently, n is even and [~21 > 0. Since the spectrum of A is symmetrical 
about the real and imaginary axes, its characteristic polynomial [A - XE] is in fact a polynomial in 
g = 92 of degree n/2 = k. It has the form 

g(g) = ~ tk + ... + gk, gk = IA[ 

Since the quadratic form (1.2) is, by assumption, non-degenerate, i + = k + m, i- = k - m, and 
consequently i + - i- = 2m. Clearly, sign IBI = (-1)i- = (-1) k-re. Since IAIIBI > 0, it follows that sign 
gk = ( - 1 )  k-m 

Let k be even. Then gk ~ +~o as g --4 --oo and sign gk = ( -1 )  m. Consequently, if m is even (odd), 
then the number s of negative roots (with multiplicities) of the polynomial g is even (odd). 

Now let k be odd. Then gk __+ _oo as g ~ --~ and sign& = - ( - 1 )  m. Consequently, i fm is even (odd), 
then s is also even (odd), which it was required to prove. 

Example. Let system (1.3) have two degrees of freedom (k = 2) and Poincar6 degree of instability 
one. Then i + = 3, i- = 1, and so i + - i i is n o t  divisible by 4. Thus, by Theorem 1, there is always a pair 
of pure imaginary roots. By Thomson's theorem, the other two roots will be real numbers of opposite 
signs. 

In the typical case when the eigenvalues of the operator A are different, one can indicate simple 
relations among the degrees of stability and instability and indices of the quadratic integral, from which 
the propositions formulated above will follow. Since system (1.1) is Hamiltonian, it follows from 
Williamson's theorem that Nn is a direct sum of invariant subspaces which are skew-orthogonal (relative 
to the bilinear form co), so that integral (1.2) may be represented as a sum of quadratic forms in these 
subspaces. These forms are usually called partial Hamiltonians. To a simple real pair of eigenvalues a, 
--a there corresponds a partial Hamiltonian apq of signature +- ,  to a pure imaginary pair +_ib there 
corresponds a Hamiltonian +_b(p 2 + q2)/2 of signature + + or - - ,  and to a quadruplet of eigenvalues 
+-a +_ib there corresponds a Hamiltonian -a(plq 1 + P2q2) + b(Plq2 -P2qa) of signature + + - - .  

Let s+(s -) be the number of pairs of pure imaginary eigenvalues to which correspond partial 
Hamiltonians of signature + + ( - - ) .  Obviously, s + + s- = s. Sincef is  non-degenerate, 

u = 2s + = i+, u + 2 s -  = i- (2.3) 

This immediately implies the congruence (2.2). Subtracting the second relation of (2.3) from the first, 
we get 

2(s + - s-) = i ÷ - i- (2.4) 
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Since the numbers s ÷ - s- and i ÷ - i- are of the same parity, equality (2.4) implies the conclusion of 
Theorem 1. Equality (2.4) also implies the useful inequality 

li + - i-[  < 2s (2.5) 

Example. If the conditions for the stability exchange principle to be valid are satisfied, a simple pair 
of real eigenvalues appears, the remaining eigenvalues remaining pure imaginary. Indeed, here i- = 1, 
i + = n - 1. Consequently, by inequality (2.5), s ) k - 1, where k = n/2. Thus s = k - 1. 

It would be useful to extend these observations to the case of multiple roots with non-trivial Jordan 
cells. 

3. S T R O N G  S T A B I L I T Y  

An equilibrium x = 0 of system (1.1) is said to be strongly stable if the eigenvalues of the operator A 
are pure imaginary and different. The property of strong stability is preserved under small 
perturbations of system (1.1). Clearly, a strongly stable equilibrium will be stable in Lyapunov's sense. 
The converse is, of course, not true. However, the conditions for the pure imaginary eigenvalues of the 
operator A to be identical define the boundary of the stability domain. 

We will now investigate the case in which the pseudo-Euclidean space (R n, f )  is an Artin space 
(i- = i+). The collection of all k = n/2-dimensional planes in R n that pass through the point x = 0 is a 
smooth Grassman manifold G of dimension/d. The set of all k-dimensional Lagrangian (singular) planes 
is a smooth submanifold L(S) in G of dimension k(k + 1)/2 (k(k - 1)/2, respectively). Since dim G = 
dim L + dim S, it is natural to seek conditions under which L and S intersect. 

Theorem 2. If an equilibrium of system (1.1) is strongly stable, then L and S do not intersect. 
The result was proved in [1] for n = 4. Theorem 1 becomes false if strong stability is replaced by 

stability in Lyapunov's sense (for examples, see [1]). 

Corollary. If a singular Lagrangian n/2-dimensional plane exists, the equilibriumx = 0 is not strongly 
stable. 

Proof. Since the eigenvalues of the operatorA are pure imaginary and distinct, and system (1.1) is 
Hamiltonian, canonically conjugate coordinates Pl . . . . .  P~, ql . . . . .  q~ (2k = n) exist, in which the 
Hamiltonian has the form 

2 f = Kl(P~ + q~)/2 +... + )~k(p 2 + qk)12 (3.1) 

where [ )~j[ is the frequency of small oscillations, with ~2 ;~ X] (see, e.g., [5]). The Hamiltonian (3.1) is 
the quadratic form (1.2) expressed in the new variables. In particular, the indices of inertia of the form 

the linear space R with pseudo-Euclidean metric (3.1) is an Artin (1.2) and (3.1) are the same. Since z~ 
space, the numbers of positive and negative coefficients )~j in (3.1) are equal. In particular, k is even, 
and therefore the dimensionalitY of the phase space must be divisible by 4. 

Remark. At first glance, this last conclusion seems to contradict the example of a mechanical system 
with gyroscopic forces and an odd number of degrees of freedom (see Section 1). However, if P < 0 
(only in that case does the total energy generate the structure of an Artin space), then the equilibrium 
of system (1.3) will be unstable by the classical Thomson theorem (since the Poincar6 degree of instability 
is odd). 

Let A be a Lagrangian plane. We will first consider the case in which the equation of A may be written 
in a form that is solvable for the momentum: 

p = Mq (3.2) 

where M = II mij [I is a symmetric k x k matrix. Let us assume that the plane A is singular. Substituting 
relation (3.2) into expression (3.1) for the Hamiltonian, we arrive at the equation 

(Jq, q) + (JMq, Mq) = 0 (3.3) 
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where J = diag(X1 . . . .  , Xk). Since the form (3.3) must vanish for all q e Nk, it follows that 

M J M  = - J  (3.4) 

Note that if Eq. (3.4) is replaced by the more general one M r J M  = -J, it is always solvable in the 
larger class of non-singular k x k matrices (since the index of inertia of the form (Jq, q) is k/2). We must 
show that this equation has no symmetric solutions. 

Since Xj ~ 0, it follows that [JI ¢ 0. Consequently, IMI ~ 0, and in particular M has an inverse. 
Multiplying Eq. (3.4) on the left and right by M -1, we obtain 

M - I J M  -~ = - J  (3.5) 

Multiplying together the left- and right-hand sides of Eqs (3.4) and (3.5), respectively, we arrive at the 
relation 

M j 2 M - I  = j2 

that is to say, the matrices M and j2 commute, MJ 2 = j2M. 
We will show that the matrix M is also diagonal. Indeed, let 

Then 

= 2 
j 2  diag(g I . . . . .  gk), gJ = )~j 

M J  2 =  ]l~tjm d ,  J2M = r[ t;mijll 

Consequently, ]..timij = ~tjmij for all i,j. Since gi ~ gj (i ~j) ,  it follows that mij = 0 for all i ~j .  
Thus, M = diag(m~ . . . .  , ink). But then the matrix equation (3.4) reduces to the contradictory relations 

Xjm} = -Xj. Hence Eq. (3.4) cannot have any symmetric solutions. 
We will now consider the case when the equation of the Lagrangian plane cannot be written in the 

form (3.2), solvable for the momenta. In the most general case, one can always choose a set of canonical 
coordinates 

Pi, . . . . .  Pi,,, qj, . . . . .  qJk-,~ (3.6) 

is such a way that 
(1) (il, ..- , ira) (Jl, .-- , jk-m) is a partition of the set (1 . . . . .  n) into two disjoint parts, 
(2) the equation of the Lagrangian k-dimensional plane A has the form 

pi l  = m l ,  l q i  1 + ' ' '  + m l ,  mqi,, , + m l , m +  l p j  l + ' ' '  + m l , k p k - r n  

--qJk-,,, = mn, lqi~ + ""  + mk, mqi,. + mk, m + lP j l  + "'" + m k ,  k P k - m  

(3.7) 

where l] m~,s 1] is a symmetric k x k matrix. Note that one of the two non-intersecting parts of the set of 
indices 1, . . . ,  n may be empty. 

Assuming that the plane A is singular, we substitute expressions (3.7) into formula (3.1) for the 
Hamiltonian and equate the resulting quadratic form to zero. As a result we again obtain Eq. (3.4) for 
the symmetric matrix M, which equation (as shown previously) has no symmetric solutions if no two 

2 2 of the numbers )~1, " "  , )~ are equal. This completes the proof of Theorem 2. 

4. S O M E  G E N E R A L I Z A T I O N S  

Let us consider the more general case in which all the eigenvalues of the non-degenerate operator A 
are pure imaginary and (in the case of multiple eigenvalues) without Jordan cells. This case corresponds 
to the property of Lyapunov stability of the equilibrium position of system (1.1). In certain suitable 
canonical coordinatespl . . . . .  Pk, ql, . . . ,  qk, the Hamiltonian function again has the form (3.1). We may 
assume without loss of generality that 

F-,I-< 1 -2I - <  -< (4.1) 
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As before, we will assume that the index of inertia of the non-degenerate quadratic form (3.1) is k. 
We will now describe all cases in which there is a Lagrangian singular k-dimensional plane. 

Let 

= I ,1 . . . . .  = . . . .  = (4.2) 

The linear space R 2k decomposes as a direct sum of m subspaces 1-I1 . . . . .  I I  m of dimensions kb k2 - k l ,  

. . . .  k - k m _ 1, respectively; the space II/is defined by the linear relations 

P l  = q l  = . . .  = P k F 1  = q k j - 1  = O ,  P k j + l  = q k j + l  = " "  = P k  = q k  = O. 

Clearly, all these subspaces are invariant with respect to the phase flow of the linear Hamiltonian system 
with Hamiltonian (3.1) (and consequently also of the original system (1.1)). 

Theorem 3. System (1.1) with the integral (1.2) admits of a singular Lagrangian plane if and only if 
the index of inertia of the restriction of the quadratic fo rmf to  each subspace FIj is dimHj/2. 

In particular, the dimensions of the subspaces H1 .... , Ilk must be multiples of four. If the inequalities 
in the chain (4.1) are strict, Theorem 3 implies Theorem 2. 

Proof. We will first verify the sufficiency of the conditions. To that end, it will suffice to consider the 
case in which n = 4 and the Hamiltonian is 

a(p21 + q~)12 2 2 - a(p 2 + q2)/2, a > 0 (4.3) 

In the general case, as pointed out previously, k is a multiple of 4 and the matrix M of Eq. (3.4) may 
be found as a partitioned matrix with symmetric 4 x 4 matrices along the diagonal, defining the equations 
of a Lagrangian singular plane for the system with Hamiltonian (4.3). 

We will describe all two-dimensional singular Lagrangian planes for the Hamiltonian system with 
Hamiltonian (4.3): 

± 
Aa " Pl = shc~ql + chaq2, P2 = +ch°~ql + shaq2 

A ~ : p l  = +-P2 ql = qzq2 

• -I" + • " • where a is a real parameter. As o~ ~ _ oo. the plane A~ obviously tends to the Lagranglan singular plane 
A~. In fact, the union of the two continuous families of planes A~, a ~ R, and the two singular planes 
Af in the four-dimensional Grassman manifold G is a topological circle -F 1 (as a hyperbola in the 
projective plane, it is in fact an oval). 

In the general case k = 4s, s e N, and the Lagrangian singular planes form an s-dimensional manifold 
parameterized by the points of an s-dimensional torus ql -s. 

Necessity is proved in the same way as Theorem 2. One has to solve the matrix equation (3.4), from 
which it follows, in particular, that the matrices M and j2 commute• Let j2 = diag()~2 . . . .  ,9~2), where 
the numbers )~j satisfy conditions (4.2). Then M = diag(M1, Me . . . . .  M m )  , where Ma, M 2 ,  . . .  , Mm are 
square symmetric matrices of orders kl, k 2  - k l ,  . . . ,  k - k m _ l ,  respectively. This follows at once from a 
comparison of the explicit forms of the matrices M J  2 and ~M. 

Thus, the problem reduces to checking the equations 

MjJjMj = - J j ,  M;  = Mj (4.4) 

for solvability in each of the subspaces IIj. Note that the matrix Jj in (4.4) is diagonal, each diagonal 
element being one of the numbers ---)~J(~4 ~ 0). 

It remains to remark that there is the same number of positive diagonal elements and negative ones, 
for otherwise (by the law of inertia) it would not be possible by the linear transformation defined by 
Mj to transform the quadratic form (,ljx, x), x ~ Ilh to the quadratic form -(Jjx, x). This completes the 
proof of the theorem. 
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5. COMPLETE INSTABILITY 

System (1.1) with the maximum possible degree of instability (u = n/2) is said to be completely unstable. 
In that case the spectrum of the operator A has no pure imaginary eigenvalues at all. 

Our main result is the following theorem. 

Theorem 4. If all the eigenvalues of the operatorA are simple, then a Lagrangian singular plane exists 
if and only if system (1.1) is completely unstable. 

Equality of the eigenvalues is an exceptional phenomenon. Hence if there is at least one singular 
Lagrangian plane, the equilibrium x = 0 is almost surely unstable. 

Pro@ Sufficiency follows from theory of normal Williamson forms [5]. If the non-degenerate system 
(1.1) is completely unstable, the spectrum of the operatorA contains either real parts +_a(a > 0) or 
complex quadruplets +__a +_ib (a, b > 0). When that is the case the Hamiltonian splits into a sum of partial 
Hamiltonians corresponding to the pairs and quadruplets, and system (1.1) itself is a direct product of 
Hamiltonian subsystems whose Hamiltonians are these partial Hamiltonians. As pointed out in Section 
3, in the unstable case the indices of inertia of the partial Hamiltonians equal half the dimensions of 
the corresponding phase spaces. It turns out that each of these subsystems has a singular Lagrangian 
plane. Indeed, the partial Hamiltonian of a pair of real eigenvalues _+a is 

apq (5.1) 

and there are therefore two such planes:p = 0 and q = 0. The following partial Hamiltonian corresponds 
to a quadruplet of eigenvalues +_a +_ib 

- a(Pl ql + P2q2) + b(Pl q2 - P2ql) (5.2) 

Here there are again two singular Lagrangian planes:p1 = P2 = 0 and ql = q2 = 0. The required singular 
Lagrangian planes of system (1.1) are the direct products of the singular Lagrangian planes of its 
subsystems. 

We will now prove necessity. In normal canonical Williamson coordinates, Hamiltonian of a system 
with simple eigenvalues is 

(KP, Q) + (Jq, p) + (Jp, q) (5.3) 

where P and Q are sets of canonical variables corresponding to the real pairs and complex quadruplets 
of eigenvalues of A, and the canonical variables p and q correspond to the pairs of pure imaginary 
eigenvalues. The matrix J is diagonal with different diagonal elements. We shall look for Lagrangian 
singular planes in the form 

where Ma and M2 are certain symmetric matrices. Substituting these expressions into formula (5.3) for 
the Hamiltonian, we obtain a quadratic form in the coordinates Q and q 

(RQ, Q) + (SQ, q) + (Tq, q) 

where T = M2JM 2 + J. If this form is identically zero, then, in particular, T = 0. Hence we obtain a 
quadratic matrix equation for M2 

M2JM2 = - J  (5.4) 

However, by Theorem 2, this equation is contradictory, since all the elements of the diagonal matrix J 
are different. The case in which the equation of the Lagrangian plane is not solvable for momenta is 
considered as in the proof of Theorem 2. 

Theorem 4 can be generalized to the case of multiple real pairs and complex quadruplets of 
eigenvalues of A, provided the multiple pairs of pure imaginary eigenvalues do not have Jordan ceils. 
In that case, the conditions for the existence of singular Lagrangian planes reduce to the conditions 
for matrix equation (5.4) to be solvable, which were described in Theorem 3. Thus, the only case still 
not considered is that of multiple pairs of pure imaginary cigenvalues with non-trivial Jordan cells. 
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Theorem 5. If system (1.1) is completely unstable and the eigenvalues of A are simple, then the number 
of distinct k-dimensional singular Lagrangian planes is 

2 (k+r)/2 (5 .5 )  

where r is the real degree of instability of system (1.1). 
Since k = u and the numbers u, r have the same parity, (k + r)/2 is an integer. Formula (5.5) links 

the number of pairs of real eigenvalues of the operator A of a completely unstable system with the 
number of intersections of submanifolds L and S of the Grassman manifold G. 

Proof. We will first consider the case in which all the eigenvalues of A are real: ___)~, )b ;~ 0. In particular, 
r = k. Then the Hamiltonian will be a sum of partial Hamiltonians of the form (5.1). A linear canonical 
transformation converts this function to the form 

k 2 2 
- qj 

Y~ ~'JPJ 2 
j = l  

(5.6) 

Since Xj ¢ 0, the index of inertia of the quadratic form (5.6) is obviously equal to k. We will seek the 
Lagrangian singular planes in the form p = Mq, where M is a symmetric k x k matrix satisfying the 
matrix equation 

M J M  = J, J = diagO~i . . . . .  ~-k) (5.7) 

This equation is similar to Eq. (3.4) and can be solved in the same way. Since no two of the numbers 
)q, . . . ,  )~ are equal, the matrix M will be diagonal: M -- diag(ml, . . . ,  ink). Consequently, Eq. (5.7) 
splits into k independent relations m~kj = kj, 1 ~ j <~ k. Since kj ¢ 0, it follows that mj = _+ 1. Thus, we 
have 2 k different Lagrangian singular planes 

A = { p , q ' p j = m j q j ,  l < _ j < k }  

These planes differ from one another in the combinations of signs in the equationspj = +__% 
In the general case, when the spectrum of A contains complex quadruplets, there will be functions 

of the form (5.2) among the partial Hamiltonians. In that case, too, the Hamiltonian reduces to the 
form of (5.6), but the corresponding canonical transformation will be complex. 

We first apply a canonical transformation 

PI = (Pl - ip2) /4r~,  Q! = (ql + iq2) 14r~ 

P2 = (Pl + ip2) /4~,  Q2 = (ql - iq2) 14r~ 

In the new variables P, Q, the partial Hamiltonian (5.2) becomes 

~,PIQI+~PzQ2,  )~ = - a - i b ,  ~ = - a + i b .  (5.8) 

Further, the linear canonical transformation P, Q --9 u, a3, defined by 

Pj = (uj + vj)14r2, Qj = ( -  uj + vj)ldr2 

converts Hamiltonian (5.8) to the form of (5.6), 

Since no two of the eigenvalues ;~j are equal, the Lagrangian singular planes are again defined by 
equations of the form 

2 
p = +_q, o I = mlu  l, D 2 = m 2 u  2, mj = 1 
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But the equations vl = ul and 1)2 = --/22, as well as 1)1 = -u l  and 132 = /g2, define non-real Lagrangian 
planes. On the other hand, the equations 1)j = u, and 1)j = -uj (j = 1, 2) define real Lagrangian singular 
planes ql = q2 = 0 andp l  = P2 = 0, respectively, for the system with partial Hamiltonian (5.2). 

Thus, the existence of a complex quadruplet in the spectrum of the Operator  A halves the number 
if Lagrangian singular planes. Consequently, the exponent in formula (5.5) equals k - (k - 2)/2 = 
(k + 2)/2, which it was required to prove. 

Corollary. If the opera torA has simple eigenvalues, the manifolds S and L are either disjoint or the 
number of their points of intersection lies in the range [2 k/z, 2k]. 

The lower limit 2/c/2 corresponds to the case in which all the eigenvalues are combined in complex 
quadruplets. 

Remark. If a completely unstable system has equal eigenvalues, then the number of different singular Lagrangian 
planes may be reduced. Let us consider as an example the case in which k = 2 and a pair of real eigenvalues with 
non-zero Jordan cell exists. The classical method of [5] reduces the Hamiltonian to the form a(plql + P2q2) + 
Plq2. It can be shown that here there are only three Lagrangian singular planes 

P l  = P2  = 0 ,  q l  = q2 = 0 ,  P l  = q2 = 0 

6. S O L U T I O N S  OF T H E  Q U A D R A T I C  M A T R I X  E Q U A T I O N  

Let us find the conditions for Eq. (1.5) to be solvable for the symmetric matrix D. Put P = -M e, were 
M = diag(~t . . . . .  g~), with all gj > 0. We shall look for solutions in the form of power series in a parameter 
e, replacing F by eF, and then put e = 1. Thus, 

D = D O + ED~ + E2D2 + ... (6.1) 

where the coefficients Dj, j />  1, are found successively from the recurrent relations 

DoD 1 + D I D  o + (FD 0 - DoF)/2 = 0 

DoD 2 + DzD o + D l + (FD 1 - D1F)/2 - F2/4 = 0 

DoD 3 + D3D o+ D I D  2+ D2D l + ( F D  2 - D 2 F ) / 2  = 0 

(6.2) 

The unperturbed matrix Do satisfies the simple matrix equation D 2 = M 2. It has 2 k distinct solutions: 
Do = diag(+gl  . . . . .  -+~tk). The solutions differ in the combinations of signs of the diagonal elements. 
This simple observation corresponds to the conclusion of Theorem 5: when there are no gyroscopic 
forces, all the eigenvalues of system (1.3) are real i f P  < 0. 

Thus, let D O = diag(d b ... , d~), where dj = +- gj. 

L e m m a  1. If di + dj ~e 0 for all 1 ~< i, j ~< k, then the equation D o X  + XDo = Y is solvable for X in 
the class of symmetric matrices, with 

IIXII < cllYI], c < maxld i + dj] -l (6.3) 

where 1[. I I is any matrix norm. 
Indeed, if Y = I ly011 a n d X  = I lxijll, then 

xij = yij/(di + d j) 

Note that the condition of the lemma is surely satisfied if no two of the numbers gl . . . .  , gk are equal. 
It also holds in the case when Do = M or Do = -M. 

Lemma 1 guarantees the solvability of the sequence of relations (6.2) with respect to D1, D2 . . . . .  Let  
D 1 be a solution of the first equation in the sequence (6.2). Put 

]]D,-F/21] = d-, IfD, +F/21J = d +, 2 d  = d + + d  - 
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The other equations of the sequence may be written in the form 

DoD 2 + D2D o + (D 1 + F/2)(D 1 - F/2) = 0 

DoD 3 + D3D o + (D I + F I 2 ) D  z + D2(D l - F/2) = 0 

DoD 4 + D4D 0 + D 2 + (D 1 + F/2)D 3 + D3(D 1 - F/2) = 0 
(6.4) 

Hence we obtain successively 

Ilozlt ~ cd+ d - < c( d + + d-)2/4 = cd 2 

110311 <- cllO211( d + + d-)  <_ 2c2 d 2 

Ilomll - l(m cm-1 d m 

There is a recurrent rule for calculating the coefficients ~m, m >1 1: 

2 
K z = 1, k 3 = 2 ,  K4 = 1~2 + 2~C3, 1~5 = 21¢21~3 + 2~c4 

2 
1~ 6 = I~ 2 + 21(21( 4 + 21(5, . . .  

(6.5) 

We introduce the function 

g(z )  = E l(mzm' K1 = 1 

m = l  

(6.6) 

L e m m a  2. The function f satisfies the equation f2 = f _  z. 
The proof follows at once from formulae (6.5). 
Thus, 

g(z)  = [ 1 - ( 1 - 4 z ) 1 / 2 ] 1 2  

and consequently, the radius of convergence of the power series (6.6) is 1/4. This implies that when 
= 1 the original series (6.1) is convergence if 

cd < 1/4 (6.7) 

In fact there are 2 ~ conditions (6.7) (depending on the number of solutions of the initial matrix 
equation D~ = -P). Each of them is surely satisfied if the norm II r II is small. Indeed, by the first equation 
of (6.2)+and Lemma 1, the norm I IDa II is small together with II r ll. Next, d +-- ~< lID1 II + I I r I I/2. Thus 
d = (d + d-)/2 ~ 0, if II r ll ~ 0. 

Theorem 6. Suppose no two of the numbers gl, . . . ,  gk are equal and all 2 k conditions (6.7) are satisfied. 
Then all the eigenvalues of the linear system (1.3) are real. 

Proof. We again replace F by eF and let the parameter e vary in the range [0, 1]. Then the coefficients 
of the characteristic equation 

[~,2E + ~,eF + P[ = 0 (6.8) 

will be analytic functions of a. We first observe that, for almost all e ~ [0, 1] (except possibly a finite 
number), the roots of the characteristic equation are all simple. 

Indeed, the discriminant of the characteristic polynomial (6.8) is an entire function of all its coefficients. 
Consequently, the discriminant will be an analytic function of the real parameter e which is non-zero 
when e = 0 (because, when there are no gyroscopic forces, the roots of Eq. (6.8) are different real pairs 
gj). Hence the discriminant may vanish only at finite number of points in the range [13, 1]. 
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Now, by conditions (6.7), the 2 k solutions of the matrix equation (1.5) (with F replaced by eF) are 
analytic matrix functions of e in the range [0, 1]. These functions are pairwise distinct, since when 

= 0 their values are equal to the 2 k distinct solutions of the matrix equation D 2 = M 2. Consequently, 
for almost all e e [0, 1], Eq. (1.5) admits of exactly 2 k distinct solutions which are symmetric k × k 
matrices. 

Combining these arguments and applying Theorems 4 and 5, we conclude that for almost all e all 
the roots of the characteristic equation (6.8) split into k different real pairs. Since these roots are 
continuous functions of the parameter s, it follows that when ~ = 1 they must still be real. 

Example. It turns out that complex quadruplets of eigenvalues in a system with gyroscopic forces 
(1.3) already arise at k = 2. Put 

F = 0 y , FI = - a  O , a > b > 0  
- y  0 0 - b 

If y = 0, then there are two real pairs ___~a, __.q-b of eigenvalues. All I YI increases, they begin to move 
toward each other, coming together at points +_(ab) 1/4, when h'l = Ca - 4~. Next they leave the real 
axis, and when ~ a - - ' f b  < I~'1 < Ca + 4~ there is a complex quadruplet of eigenvalues. When I~'1 = 
~a + 4-b, the eigenvalues collide with the points +_i(ab) TM of the imaginary axis. As I~1 continues to 
move, they diverge along the imaginary axis and the equilibrium becomes stable. 

We will now determine the boundary beyond which the eigenvalues cease to be real, as defined by 
ieequality (6.7). Put 

D o = diag(+~/a, +4rb) 

Then 

O 1 = 
2 ( 4 ~ -  4~) , 

~:v(~  + ~ )  o 
2(,,/~ - ,,/rb) 

1 
c - 4r ~ _ ,f~ (6.9) 

and consequently 

d = d -+ = h,I,,/Z/(,,/A - ,,~) 

Thus, inequality (6.7) yields the sufficient condition for the eigenvalues to be real: 

17[ < ( ' ~  - ,,/b)2/(4,v/-a) (6.10) 

It is clear that the right-hand side of this inequality does not exceed ~a - ~/b, if a i> b. 
Note that if it is assumed that equality (6.9) holds, then inequality (6.7) yields the condition 

2 
h'l < (,,/Z + ~ )  l ( 4 ~ )  (6.11) 

which includes condition (6.10). However, by Theorem 6, the interval in which the eigenvalues are real 
reduces to the intersection of the intervals (6.10) and (6.11). By Theorem 1, inequality (6.10) is a sufficient 
condition for system (1.3) not to be strongly stable. 
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